ar X iv : 0 80 3 . 08 90 v 1 [ qu an t - ph ] 6 M ar 2 00 8 Locality of dynamics in general harmonic quantum systems

نویسندگان

  • M. Cramer
  • A. Serafini
  • J. Eisert
چکیده

The Lieb-Robinson theorem states that locality is approximately preserved in the dynamics of quantum lattice systems. Whenever one has finite-dimensional constituents, observables evolving in time under a local Hamiltonian will essentially grow linearly in their support, up to exponentially suppressed corrections. In this work, we formulate Lieb-Robinson bounds for general harmonic systems on general lattices, for which the constituents are infinite-dimensional, as systems representing discrete versions of free fields or the harmonic approximation to the Bose-Hubbard model. We consider both local interactions as well as infinite-ranged interactions, showing how corrections to locality are inherited from the locality of the Hamiltonian: Local interactions result in stronger than exponentially suppressed corrections, while non-local algebraic interactions result in algebraic suppression. We derive bounds for canonical operators, Weyl operators and outline generalization to arbitrary operators. As an example, we discuss the Klein-Gordon field, and see how the approximate locality in the lattice model becomes the exact causality in the field limit. We discuss the applicability of these results to quenched lattice systems far from equilibrium, and the dynamics of quantum phase transitions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : 0 80 3 . 08 90 v 2 [ qu an t - ph ] 3 1 M ar 2 00 8 Locality of dynamics in general harmonic quantum systems

The Lieb-Robinson theorem states that locality is approximately preserved in the dynamics of quantum lattice systems. Whenever one has finite-dimensional constituents, observables evolving in time under a local Hamiltonian will essentially grow linearly in their support, up to exponentially suppressed corrections. In this work, we formulate Lieb-Robinson bounds for general harmonic systems on g...

متن کامل

ar X iv : 0 80 3 . 12 19 v 1 [ qu an t - ph ] 8 M ar 2 00 8 Optical squeezing of a mechanical oscillator by dispersive interaction

We consider a small partially reflecting vibrating mirror coupled dispersively to a single optical mode of a high finesse cavity. We show this arrangement can be used to implement quantum squeezing of the mechanically oscillating mirror.

متن کامل

ar X iv : 0 80 5 . 04 23 v 1 [ qu an t - ph ] 4 M ay 2 00 8 Tripartite entanglement dynamics for atom in a two - mode nonlinear cavity

We study Hamiltonian dynamics of a single two-level atom interacting with two modes in a single cavity, which can also include an optical Kerr nonlinearity. Our model is quite general and is solved analytically and studied numerically, and the model reduces to several well known systems by setting certain parameters in the Hamiltonian to zero. We calculate and discuss entanglement between the t...

متن کامل

ar X iv : 0 80 8 . 36 90 v 1 [ qu an t - ph ] 2 7 A ug 2 00 8 Entanglement dynamics of two - qubit system in different types of noisy channels ∗

X iv :0 80 8. 36 90 v1 [ qu an tph ] 2 7 A ug 2 00 8 Entanglement dynamics of two-qubit system in different types of noisy channels ∗ C. J. Shan, J. B. Liu, W. W. Cheng, T. K. Liu, Y. X. Huang, and H. Li College of Physics and Electronic Science, Hubei Normal University, Huangshi 435002, China (Dated: August 27, 2008) Abstract In this paper, we study entanglement dynamics of a two-qubit extende...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008